Wu, F. & Yushin, G. Conversion cathodes for rechargeable lithium and lithium-ion batteries. Energy Environ. Sci. 10, 435–459 (2017).
Lee, S. H., Kim, J. H. & Yoon, J. R. Laser scribed graphene cathode for next generation of high performance hybrid supercapacitors. Sci. Rep. 8, 1–9 (2018).
Ju, X. et al. Surfactant-assisted synthesis of high energy {010} facets beneficial to Li-ion transport kinetics with layered LiNi0.6Co0.2Mn0.2O2. ACS Sustain. Chem. Eng. 6, 6312–6320 (2018).
Kim, S. W., Seo, D. H., Ma, X., Ceder, G. & Kang, K. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2, 710–721 (2012).
Lee, S. H., Jin, B. S. & Kim, H. S. Superior performances of B-doped LiNi0.84Co0.10Mn0.06O2 cathode for advanced LIBs. Sci. Rep. 9, 1–7 (2019).
Du Pasquier, A., Plitz, I., Menocal, S. & Amatucci, G. A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications. J. Power Sources 115, 171–178 (2003).
Purwanto, A. et al. NCA cathode material: Synthesis methods and performance enhancement efforts. Mater. Res. Express 5, 122001 (2018).
Dahn, J. R., Fuller, E. W., Obrovac, M. & von Sacken, U. Thermal stability of LixCoO2, LixNiO2 and λ-MnO2 and consequences for the safety of Li-ion cells. Solid State Ionics 69, 265–270 (1994).
Vu, D. L. & Lee, J. Properties of LiNi0.8Co0.1Mn0.1O2 as a high energy cathode material for lithium-ion batteries. Korean J. Chem. Eng. 33, 514–526 (2016).
Sim, S. J., Lee, S. H., Jin, B. S. & Kim, H. S. Effects of lithium tungsten oxide coating on LiNi0.90Co0.05Mn0.05O2 cathode material for lithium-ion batteries. J. Power Sources 481, 229037 (2021).
Lee, S. H., Park, G. J., Sim, S. J., Jin, B. S. & Kim, H. S. Improved electrochemical performances of LiNi0.8Co0.1Mn0.1O2 cathode via SiO2 coating. J. Alloys Compd. 791, 193–199 (2019).
Lee, S. H., Lee, S., Jin, B. S. & Kim, H. S. Optimized electrochemical performance of Ni rich LiNi0.91Co0.06Mn0.03O2 cathodes for high-energy lithium ion batteries. Sci. Rep. 9, 1–7 (2019).
Sim, S. J., Lee, S. H., Jin, B. S. & Kim, H. S. Use of carbon coating on LiNi0.8Co0.1Mn0.1O2 cathode material for enhanced performances of lithium-ion batteries. Sci. Rep. 10, 1–9 (2020).
Majumder, S. B., Nieto, S. & Katiyar, R. S. Synthesis and electrochemical properties of LiNi0.80(Co0.20–xAlx)O2 (x = 0.0 and 0.05) cathodes for Li ion rechargeable batteries. J. Power Sources 154, 262–267 (2006).
Kannan, A. M. & Manthiram, A. Structural stability of Li1−xNi0.85Co0.15O2 and Li1−xNi0.85Co0.12Al0.03O2 cathodes at elevated temperatures. J. Electrochem. Soc. 150, A349 (2003).
Fan, Z. Y., Jin, E. M. & Jeong, S. M. Enhanced electrochemical properties of NCA cathode materials for lithium ion battery by doping effect. Korean Chem. Eng. Res. 55, 861–867 (2017).
Li, J. et al. Facilitating the operation of lithium-ion cells with high-nickel layered oxide cathodes with a small dose of aluminum. Chem. Mater. 30, 3101–3109 (2018).
Jo, M., Noh, M., Oh, P., Kim, Y. & Cho, J. A new high power LiNi0.81Co0.1Al0.09O2 cathode material for lithium-ion batteries. Adv. Energy Mater. 4, 1–8 (2014).
Hou, P., Zhang, H., Deng, X., Xu, X. & Zhang, L. Stabilizing the electrode/electrolyte interface of LiNi0.8Co0.15Al0.05O2 through tailoring aluminum distribution in microspheres as long-life, high-rate, and safe cathode for lithium-ion batteries. ACS Appl. Mater. Interfaces 9, 29643–29653 (2017).
Myung, S. T. et al. Nickel-rich layered cathode materials for automotive lithium-ion batteries: Achievements and perspectives. ACS Energy Lett. 2, 196–223 (2017).
Xia, Y., Zheng, J., Wang, C. & Gu, M. Designing principle for Ni-rich cathode materials with high energy density for practical applications. Nano Energy 49, 434–452 (2018).
Qiu, Z., Zhang, Y., Dong, P., Xia, S. & Yao, Y. A facile method for synthesis of LiNi0.8Co0.15Al0.05O2 cathode material. Solid State Ionics 307, 73–78 (2017).
Zhang, H., Yang, S., Huang, Y. & Hou, X. Synthesis of non-spherical LiNi0.88Co0.09Al0.03O2 cathode material for lithium-ion batteries. Energy Fuels 34, 9002–9010 (2020).
Li, W., Reimers, J. N. & Dahn, J. R. In situ X-ray diffraction and electrochemical studies of Li1−xNiO2. Solid State Ionics 67, 123–130 (1993).
Park, T. J., Lim, J. B. & Son, J. T. Effect of calcination temperature of size controlled microstructure of LiNi0.8Co0.15Al0.05O2 cathode for rechargeable lithium battery. Bull. Korean Chem. Soc. 35, 357–364 (2014).
Ryu, H. H., Park, G. T., Yoon, C. S. & Sun, Y. K. Microstructural degradation of Ni-rich Li[NixCoyMn1−x−y]O2 Cathodes during accelerated calendar aging. Small 14, 1803179 (2018).
Nara, H. et al. Impedance analysis of LiNi1/3Mn1/3Co1/3O2 cathodes with different secondary-particle size distribution in lithium-ion battery. Electrochim. Acta 241, 323–330 (2017).
Oldenburger, M. et al. Investigation of the low frequency Warburg impedance of Li-ion cells by frequency domain measurements. J. Energy Storage 21, 272–280 (2019).
Matsumoto, K., Kuzuo, R., Takeya, K. & Yamanaka, A. Effects of CO2 in air on Li deintercalation from LiNi1−x−yCoxAlyO2. J. Power Sources 81–82, 558–561 (1999).
Li, Y. K., Wang, W. X., Wu, C. & Yang, J. Screen-printed dual-particle-containing multicomponent-blending carbon nanotube cathode: Enhancement of electron emission characteristics current emission stability, and uniformity. Trans. Electr. Electron. Mater. 23, 64–71 (2022).
Kim, Y., Park, H., Warner, J. H. & Manthiram, A. Unraveling the intricacies of residual lithium in high-Ni cathodes for lithium-ion batteries. ACS Energy Lett. 6, 941–948 (2021).